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Received 5 January 1976, in final form 22 March 1976 

Abstmact. A general form of two earlier relations involving 3-1 symbols was found through 
further investigation of the helium atom problem. These relations are proved, and a very 
general summation is evaluated which should be most useful in summing any similar series 
found in connection with the helium atom problem. 

In an earlier letter (Morgan 1975) it was proved that 

I 1 1 I’+J 1-1’+J ) = -(2J+ l)-’&,, 
= , ‘ = 0 2 1  E-( -1 0 0 0 

and conjectured that 

1+1 1 ) ( 1  I’+J 1-1‘+J ) = o  
0 

for the non-negative integral and $-integral 1 and integral J. Recently two articles on 
these relations appeared in this journal (Rashid 1976, Vanden Berghe and De Meyer 
1976). 

Rashid’s letter contains an error (in equation (5) for ‘I‘(z+l)’ read ‘I‘(z+$)’ 
(Gradshteyn and Ryzhik 1965, p 938)), but he appears to have used the proper formula 
in his manipulations. A more serious consideration is that his equation (8) is of the form 
0 X 00 and equations (9) and (10) are of the form 0 X 00 x 0 for integral 1 3 I‘, which is the 
case under investigation. Although it is easy to see that the limit exists in (8), because 
sin ml has a simple zero and I‘(1’- 1) a simple pole for integral 13 1’, the existence of the 
limit in the case of the hypergeometric functions is not immediately obvious, and 
perhaps a justification of these formulae should have been included. 

Recently a more general form of equations (1) and (2) was obtained in investigating 
recursion relations for the exact solution of the non-relativistic helium atom problem: 

1 ) ( l  I’+J l - l ’ + J  1 I 2(21+2+1) 1 
0 Sl,r(z)= c ( 

I’=O (21+z)(z-l) 21‘+2+1-21’+2--1 0 0 (3) 

for integral J, non-negative integral and $integral 1, and complex z # 1 - 2k, where k is 
a natural number less than or  equal to 1 + 1, and z # -21. It will be shown that 
S&) = 0 for all such z # 0. For z = 0, equation (3) reduces to equation (1). 
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First let us consider 

/ 1 ( 1  I’+J = c  /’=021-21’+Z-l 0 0 0 (4) 

under the above restrictions on 1, J, and z .  We note that MLJ(0) = SI,  in equation (1). 
Since 

(7) 

Now 

1 + 1  I’ I - I ’+l  

1 + 1  1’ I - I ’ + l  

/+1 1 

1 / 1 - - (21+z+1) (21+3)+;02~’+z- l~  0 0 0 

( 0  0 0 (8) 

(21+ t + 1)(21+3)+;0 21 -21’+ z - 1 K ( 0  

Since 

1 + 1  I’ 1-1’+1 

1 21-21’+1 
0 

1 1 

(*[+z + 1)(2r+3)+& 21’+ z - 1 I- f’+ 1 M/+l,O(Z) = 

- 1 1 1 21’+1 1 1’+1 I - I ’ + l  - 
0 0 

~ 

(21+ z + 1)(2I+ 3) 

1 -i /‘=0(21-21’+z-l)(1’+1) 0 

1 1 I ’ + l  1-1’+1 1 - @  r = 0 2 1 + 2 + 1  l (  21-21’+z-l +-I( l ’ + l  0 0 0 
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because of equation (8) of the first letter. Using (6) ,  

where it is understood that l-Iy=l = 1. For integral z 2 2, the product in equation (1 1) can 
be written as (21+2-2)!!(2-1)!!((~-2)!!(21+2-1)!!)-~. Use of equation (11) with 
J = 0 for z and z + 2 in equation (3) yields the result that SkJ(z) = 0 for the appropriate 
z Z 0 ,  and we have already seen that S~I(0)=-(23+l)-’SLo. We also note that 
sf,, = (21+3)(1+ l)-’SLJ(2). 

M&) is 0 for $-integral 1 since the 3-1 symbols then vanish identically. 
The finding of expression (11) for Mf,,(z)  enables us to evaluate any summation of 

the form 

I 1 l’+J I - l ’ + J  
I’=O 0 

provided that the function f(I, z, 1’) can be written as a linear combination of reciprocals 
of terms linear in 1’. In particular, we shall be able to evaluate easily any similar 
summations encountered in our study of the helium atom problem. 

We note that M&) is analytic everywhere except for z = 1 -2k, where k is a 
natural number less than or equal to 1, with radius of convergence minimum 
{lz + 2k - l ( (k  is a natural number between 0 and 1 ) .  It has simple poles at its singular 
points. 
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